Some identities for multiple zeta values

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Algorithms for Some Euler-Type Identities for Multiple Zeta Values

. . . , s k are positive integers with s 1 > 1. For k ≤ n, let E(2n, k) be the sum of all multiple zeta values with even arguments whose weight is 2n and whose depth is k. The well-known result E(2n, 2) = 3ζ(2n)/4was extended to E(2n, 3) and E(2n, 4) by Z. Shen and T. Cai. Applying the theory of symmetric functions, Hoffman gave an explicit generating function for the numbers E(2n, k) and then ...

متن کامل

Some Identities for the Riemann Zeta-function

Several identities for the Riemann zeta-function ζ(s) are proved. For example, if s = σ + it and σ > 0, then ∞ −∞ (1 − 2 1−s)ζ(s) s 2 dt = π σ (1 − 2 1−2σ)ζ(2σ). Let as usual ζ(s) = ∞ n=1 n −s (ℜe s > 1) denote the Riemann zeta-function. The motivation for this note is the quest to evaluate explicitly integrals of |ζ(1 2 + it)| 2k , k ∈ N, weighted by suitable functions. In particular, the prob...

متن کامل

Partition Identities for the Multiple Zeta Function

We define a class of expressions for the multiple zeta function, and show how to determine whether an expression in the class vanishes identically. The class of such identities, which we call partition identities, is shown to coincide with the class of identities that can be derived as a consequence of the stuffle multiplication rule for multiple zeta values.

متن کامل

Aspectsof Multiple Zeta Values

Multiple zeta values (MZVs, also called Euler sums or multiple harmonic series) are nested generalizations of the classical Riemann zeta function evaluated at integer values. The fact that an integral representation of MZVs obeys a shuue product rule allows the possibility of a combi-natorial approach to them. Using this approach we prove a longstanding conjecture of Don Zagier about MZVs with ...

متن کامل

Multiple Zeta Values

for any collection of positive integers s1, s2, . . . , sl. By definition, Lis(1) = ζ(s), s ∈ Z, s1 ≥ 2, s2 ≥ 1, . . . , sl ≥ 1. (4.2) Taking, as before for multiple zeta values, Lixs(z) := Lis(z), Li1(z) := 1, (4.3) let us extend action of the map Li : w 7→ Liw(z) by linearity on the graded algebra H (not H, since multi-indices are coded by words in H). Lemma 4.1. Let w ∈ H be an arbitrary non...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Number Theory

سال: 2012

ISSN: 0022-314X

DOI: 10.1016/j.jnt.2011.06.011